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FLUID MECHANICS OF COMPRESSION SYSTEM FLOW
CONTROL

David Car
Steven Puterbaugh

Propulsion Directorate
Wright-Patterson AFB, Ohio

Abstract
The aim of Fluid Mechanics of Compression System Flow Control is to increase the
diffusion capacity of an axial compressor stator through the application of blade-
surface-mounted flow control. The experimental portion of the work employs a small
wind tunnel that allows the investigation of flow control concepts applied to a simu-
lated single stator passage. Baseline results are presented along with those of three
flow control modules; all are variations of blowing (no aspiration) flow control using
a planar jet behind a backward facing step positioned upstream of the passage cur-
vature. Two preliminary investigations are presented. The first includes the effect
of the thickness of the lip separating the main stream from the core stream of the
backward facing step and its impact on the flow control effectiveness. The second in-
troduces streamwise vorticity via flat plate vortex generators as a means of enhancing
the interaction between the blowing jet and the core stream.

Introduction
Flow control particular to axial compression systems has become a very active research
topic for the last few decades.1–4 It has the potential to open the design envelope for
axial compressors to higher loading levels. This translates into higher overall pressure
ratios for reduced thrust specific fuel consumption (TSFC). Increased loading levels
also increases thrust-to-weight(T/W) ratios by reducing turbine engine axial length
for a given pressure ratio. The Air Force Versatile Affordable Advanced Turbine
Engine (VAATE) program cycle requirements will drive a much higher overall pressure
ratio, thus requiring larger pressure rise per stage in order to keep overall engine length
reasonable.

The research objective of this work is to increase the diffusion capability of a sta-
tor flow passage via flow control methods. To assist in this effort, an experimental
flow control research rig has been designed and will be briefly outlined in this re-
port. Following will be the initial investigation and comparison of three flow control
modules; all are variations on a theme of blowing only flow control using a planar jet
behind a backward facing step. Two of the variations are preliminary investigations
into the effect of the separation distance between the primary and secondary streams
due to finite material thickness separating the streams. The third variation seeks to
embed streamwise vorticity via vortex generators into the shear layer between the
primary and secondary flow streams. The goal is to enhance the interaction between
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(a) Top View of FCAD wind tunnel (b) Flow control module with slot

Figure 1: FCAD Wind Tunnel

the streams and thereby reduce the secondary flow requirements for a given level of
diffusion.

Experimental Apparatus
The Flow Control Augmented Diffusion (FCAD) wind tunnel is an atmospheric in-
draft design. After passing through a bellmouth and flow straightener, the airflow
accelerates through a converging inlet of roughly 12:1 area contraction to a rectangular
throat, 1.5 x 10.2 cm (0.6 x 4.0 in). The throat, typically operated at Mach 0.7, is
the beginning of the curved diffusor test section. The diffusor geometry is based on
aggressive goals for an axial compression system. The diffusor passage has an exit-
to-throat area ratio of 2.92, a flow turning angle of 70 degrees, with suction (convex)
side radius of curvature nearly constant at 5.1 cm (2.0 in). Following the diffusor is
a sudden expansion into a rectangular settling chamber. An adaptor piece guides the
flow from the settling chamber into a flexible 7.6 cm (3 in) diameter duct connected
to the primary flow driver. Figure 1 illustrates the basic flowpath from the inlet (at
right) to the dump chamber (left).

Because present research goals include identification of key physical mechanisms re-
lating diffusion and flow control, the tunnel was designed with optical access as a
priority. The top and bottom walls are transparent acrylic sheets, and sandwiched
in between are wall segments with height of 10.2 cm (4 in). Defining the suction
(convex) side of the curved diffusor test section is a readily replaceable aluminum
module for testing various flow control concepts. One such module is shown in Figure
1. The planar jet height for these studies was fixed at 0.508 mm and the jet surface
was constructed as follows: 1) The baseline convex surface was a constant radius of
50.8 mm ; 2) This radius was reduced 1.397 mm at the throat to accomodate the jet
and lip thickness; 3) A linear function in the angular coordinate was used to fit this
radius to the 50.8 mm radius at the exit of the passage.

Lip Thickness Study
The influence of the separation distance between the core flow and jet flow due to the
finite material thickness of the upper plate on the flow field was investigated. Two
material thickness were tested: 0.635 mm and 0.127 mm which are 125% and 25% of
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the planar jet size respectively. The 0.127 mm thickness was achieved by honing the
upper surface of the 0.635 mm plate at a 5 degree angle. Figure 2 shows the post
processed DPIV average flowfield for a flow fraction of approximately 2% for both
the 125% and 25% cases. The 25% lip thickness shows much more diffusion over the
125% case.

FC1-Thick Lip 2.25%  PIV Average of ~75files

(a) Composite image of 125% primary to sec-
ondary separation distance and 2.25% flow con-
trol

FC3-Thin Lip FC2%  PIV Average of >100files

(b) Composite image of 25% primary to sec-
ondary separation distance and 2.00% flow con-
trol

Figure 2: Effect of Core and Jet Separation on Diffusion Effectiveness
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Figure 3: Effect of Core and Jet Separation on Static Pressure Recovery

As is clear from Figure 2, larger regions of flow separation exist for the 125% thickness
case. Consequently, the 25% lip thickness requires half the secondary flow requirement
for the same static pressure rise coefficient versus the 125% case as seen in Figure 3.
This has significant implications regarding the manufacturing requirements for such
an approach.
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Streamwise Vorticity Addition
It is postulated that increased streamwise vorticity will enhance the mixing between
the main and secondary streams resulting in a persistent momentum exchange that
will signficantly delay separation. In order to effect this condition, pairs of counter-
rotating streamwise vortices are introduced via flat plate vortex generators placed on
the upper surface of the flow control module plate as shown in Figure 4. Vortex pairs
were created such that their induced motion was toward the surface and the planar
jet.5,6

The desired circulation strength, Γ, and spacing, d, for the vortex pair was determined
by taking a much simplified approach to the flowfield. The flowfield was approximated
as undergoing a transition from velocity V1 at the throat to V2 at the exit in a linear
fashion. A relationship between streamwise position and time could then be obtained.
An approximation of the circulation generated by a NACA 0012 vortex generator7

was used to relate the VG geometry to circulation strength. It was also assumed
that the streamwise vortex pair advects with the background flow field. Due to space
limitations, the final result will only be presented here. A functional relationship in
the form of an inequality was generated relating the geometric parameters of the VG
with the diffusion characterisitics of the passage:

F (AR, d/C)G(α, h/δ)

H(DF )
≤ 1

F (AR, d/C) =

(
AR + k2

k1

)(
d

C

)

G(α, h/δ) =
(

1

α

)(
1

tanh(k3(h/δ))

)

H(DF ) = − 4

π2
ln

(1−DF )

DF

where

k1 = 1.61; k2 = 0.48; k3 = 1.41; k4 = 1.00; AR =
8

π

h

c
; DF = 1− V2

V1

where C is the surface arc length; c is the VG chord length; AR is the VG aspect
ratio; h is the VG height; δ is the boundary layer height at the VG leading edge;
d is the distance between VG trailing edges (see Figure 4); V1 is the passage throat
velocity; V2 is the passage exit velocity; and DF is a simplified diffusion factor as
defined above.

The function H is dependent only upon flow field kinematics (the diffusion factor).
Both functions F and G are dependent on geometric characteristics along with the
boundary layer thickness. A family of characteristic curves of FG/H were produced
by fixing the function G through a choice of α and h/δ and the diffusion factor of
0.7 for the passage under consideration. Two geometric constraints were applied due
to physical limitations of using these VG’s. The first was due to the constraint of
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generating two counter-rotating vortices a distance d apart using VG’s at an angle of
attack α. Figure 4 shows a top-down view of the VG’s with relevant dimensions. The
second geometric constraint was derived from a heuristic argument that the distance,
d, between the vortex pair should be less than the height of the VG. This is applied so
that the vortex image does not dominate initially and cause the vortex pair to migrate
apart. A geometric configuration was chosen that maximizes the circulation and yet is
acceptable according to the two geometric constraints. The boundary layer thickness
for the wind tunnel at the throat was approximated from a CFD calculation at 0.254
mm. Using the surface arc length of the passage, C, of 31 mm gives the following VG
geometric parameters:

h = 3.81mm; d = 3.765mm; c = 3.962mm; α = 25o, di = 0.3765mm

(a) Counter-rotating
VG Geometry Defini-
tion

(b) VG Flow Control
Upper Plate

Figure 4: VG geometry and FCAD plate

Figure 4 shows the flow control module
upper plate obtained by using these ge-
ometric parameters at a spacing of 4.5d
between VG pairs. The spacing between
pairs of vortices was chosen based on
guidelines outlined in 5.

Future Direction
The embedded streamwise vorticity ex-
periment will be tested and stereo PIV
measurements take in order to analyze
the streamwise vortex generation and
migration. Also, exit total pressure mea-
surement traverses will be added to the
experimental data collection. Methods to address endwall effects will also be con-
sidered and modeling performed to enhance the data obtained from experimental
measurements.
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